Vehicle Design and Pedestrian Safety

Chris Cherry (cherry@utk.edu)

Saurav Parajuli (sparaju1@vols.utk.edu)

Department of Civil and Environmental Engineering

Background: National Crash Trends

- 2000: Pedestrians made up
 11% of total traffic fatalities
- 2022: Pedestrian fatalities hit a record high, accounting for 18% of all traffic deaths
- Pedestrian deaths: 83
 percent increase from 2009
 to 2022
- Unique to the US

Source: IIHS Fatality Facts 2022 Pedestrian

Large Vehicle Sales vs. Ped. Deaths

Unique to the US

The US is the only country where the rise of large cars has coincided with a rise in pedestrian fatalities, suggesting other factors play a larger role % of cars that are SUVs or light trucks vs pedestrian road deaths per million people

What causes Pedestrian Injury Severity?

THE SAFE SYSTEMS APPROACH

Pedestrian Injury Mechanisms (Sedan)

Impact Kinematics (Sedan, Center Impact, 40km/h).

Source: Research of the Relationship of Pedestrian Injury to Collision Speed, Car-type, Impact Location and Pedestrian Sizes using Human FE model (THUMS Version 4), Watanabe et al. (2012)

Pedestrian Injury Mechanisms (SUV)

Impact Kinematics (SUV, Center Impact, 40km/h).

Source: Research of the Relationship of Pedestrian Injury to Collision Speed, Car-type, Impact Location and Pedestrian Sizes using Human FE model (THUMS Version 4), Watanabe et al. (2012)

Secondary hits

- At low speeds, head injury caused by secondary impact (ground hits) is more dangerous than primary impact
- Brain injury from rapid head movements leading (sideswipe impacts)
- Ground hits are more dangerous in SUVs than sedans with possible chances of runovers

Pedestrian trauma sequence for different rotations (Hamacher et al. (2018))

Visibility: SUVs vs. Cars

Blind spots (VIEW Blindzone App)

Source: https://blindzonesafety.org/vehicle_database_table/

A-pillar blind spots during a turn

Source: Intersection kinematics: A pilot study of driver turning behavior with application to pedestrian obscuration by A-pillars, Reed (2008)

Pedestrian Trends in Tennessee (2009-2023)

- Fatality increased by **2.8 times** (max. 3.1 in 2022)
- Involvement increased by 25 percent
- Fatality rate increased by 126% (4.30 deaths per 100 involved to 9.71 deaths per 100 involved)
- 75% of total deaths occurred in the nighttime

Pedestrian Trends in Tennessee (2009-2023)

- Fatality increased by **2.8 times** (max. 3.1 in 2022)
- Involvement increased by 25 percent
- Fatality rate increased by 126% (4.30 deaths per 100 involved to 9.71 deaths per 100 involved)
- 75% of total deaths occurred in the nighttime

Using Police Crash Data

- Represents real life crash instances
- Injury severity is reported in a spectrum (KABCO scale) although subjective for non-fatal injuries
- Exhaustive crash analysis (all reported crashes)
- Vehicle dimensions linked from NHTSA's VIN Decoder and Canadian Vehicle Specifications dataset
- Lacks vehicle impact speed details

- TN Police Crash Data from 2009 to 2024
- Single-unit non-interstate urban pedestrian crashes
- 16,547 crashes involving pedestrians and consumer vehicles (passenger cars, SUVs, pickups, and sedans)

Proxies for Analysis

- Proxy for Vehicle Impact Speed: Posted Speed Limit
- Proxy for Vehicle Weight: Vehicle Curb Weights
- Proxy for vehicle Design/ Front Hood Height: Vehicle Overall Height
- Vehicle age used as a combined proxy for
 - Vehicle wear and tear effects for older vehicles
 - Impacts of safety technology for newer vehicles

Ped. Injury Outcomes and Vehicle Types

TN Crash data (2009-2024)

Weight and Height Distributions

Curb Weights 6 1.75 Passenger cars Passenger cars SUVs SUVs Pickups Pickups 1.50 5 Minivans Minivans 1.25 4 Density Density w 0.75 2 0.50 1 0.25 0.00 Ω 4.0 4.5 5.0 5.5 6.5 7.0 7.5 2 3 5 7 8 6.0 6 4 Curb Weight (1000 lbs.) Vehicle Height (ft)

TN Crash data (2009-2024)

Vehicle Height

Modeling Approach

- Partial proportional odds model
- Outcome variable
 - 3 levels of injury severity (Fatal, Seriously-injured, and others)
- Independent variables
 - Speed limit, vehicle curb weight, speed-weight interaction, vehicle type/ vehicle overall height, vehicle age, and low-speed manuevers
- Control variables
 - Lighting, crash-year fixed effects, pedestrian features, and driver features

Results

- Speed limit is strongly associated with injury severity outcomes
- Vehicle curb weights and vehicle age are significantly associated with injury outcomes
- Vehicle curb weight and speed limit interaction is significant
- Vehicle overall height is significant for fatal outcomes, weakly significant for severe outcomes

Results

- A 1000 lbs. increase in curb weights raises fatal/severe injury odds by
 - (+)13% on 15 mph (low speed roads)
 - (+)4% on 30 mph roads
- A foot increase in vehicle overall height raises fatal injury odds by 29%
 - Minivans are 29% more likely to be associated with fatal outcomes than cars
 - Compact SUVs are 21% more likely than cars
 - Large SUVs and pickups are 42% more likely than cars
- 11-year-old vehicles are 14% more dangerous than new vehicles controlling for

Vehicle trends

Vehicle Landscape

Т

QUESTIONS?

THANK YOU

